
White Paper: The Strategic Value of
JProfiler inModernSoftwareDevelopment
Empowering Development Teams to Achieve Optimal Performance and

Cost Efficiency

© 2024 ej-technologies GmbH. All rights reserved.

Executive Summary
In the competitive landscape of software development, efficiency and performance are
not merely goals but prerequisites for success. JProfiler stands out as a comprehensive
tool designed to enhance development productivity, optimize resource allocation, and
mitigate the risks associated with production outages. This white paper explores the
tangible benefits of investing in JProfiler, drawing a comparison with free profiling tools,
and demonstrating how JProfiler justifies its cost through substantial time and money
savings.

2

Introduction
Today's development environment demands the creation of robust and scalable
applications with rapid development cycles. At the same time, cost-effective resource
management is a principal focus for many organizations.

In this context, the choiceofprofilingtoolsbecomescritical. The savings that organizations
realize through the use of profilers primarily come from three categories:

Shortening development times

Lowering cloud costs

Reducing production Outages

We will examine these categories in detail and demonstrate how the savings quickly offset
the licensing costs for JProfiler.

While free-of-charge profiling tools could be used for this purpose, they only offer basic
capabilities. JProfiler provides a sophisticated suite of features designed to address a
much broader range of challenges. Below, we will discuss the comparisons with the
corresponding best-in-class tools that are free of charge.

Shortening Development Times
Focus on Business Logic

JProfiler empowers developers to concentrate on developing business logic rather than
getting bogged down by performance issues. This focus significantly accelerates the
development process, ensuring that projects meet their timelines without compromising
on quality.

Without a profiling tool, pro-active optimization efforts during development and
investigations into the performance characteristics of certain operations through the
modification of code and the introduction of testing harnesses takes a considerable
amount of time. With a profiling tool, this recurring activity can be reduced to a small
fraction: Optimization efforts are only performed post-hoc on actual problems that are
detected with JProfiler and not a priori on hypothetical issues derived from logical
reasoning.

Performance and Memory Optimization

By pinpointing performance bottlenecks and memory leaks precisely where they occur,
JProfiler ensures that optimization efforts are directed effectively, following the principle
of addressing the most critical issues first. The benefits of using JProfiler include:

• Enhanced testing speed and more accessible profiling, thanks to its unparalleled
integration into IDEs and build systems, and its support for profiling on remote machines,
Docker containers and Kubernetes clusters.

3

• Early detection of unexpected performance issues and memory leaks, significantly
improving the development process.

• Rapid identification of the causes behind performance problems and memory leaks,
enabled by advanced data recording and analysis.

Example calculation for cost savings

We estimate a lower bound on these kinds of savings at an average of 30 minutes per
developer per week. Considering developer salaries in industrialized countries, this
translates to a cost saving of over $1,000 per developer per year. This alone amortizes
the licensing cost of JProfiler in the first year, regardless of whether the following cost-saving
topics apply to your production environment.

Lowering Cloud Costs
Optimizing Resource Usage

JProfiler aids in significantly reducing cloud expenses by enabling developers to optimize
resource usage efficiently. Its comprehensive analysis capabilities help in understanding
scalability issues, thereby facilitating the development of more efficient code that demands
less CPU and memory resources.

With the extensive depth and breadth of JProfiler's features in the call tree and hot spot
views, and a regular usage of JProfiler in the development process our customers routinely
achieve significant reductions in CPU time by

• Optimizing hotspots
• Improving inefficient code paths
• Fixing algorithmic inefficiencies

4

With the help of the live memory views as well as the powerful feature set of JProfiler's
heap walker, our customers reduce memory usage by

• Eliminating memory leaks
• Reducing unnecessary object creation
• Optimizing data structures

In total, we estimate that a development team using JProfiler can deliver applications
that consume 20%-50% less CPU time and 10% to 30% less memory.

Reducing Data Transfer Rates

By minimizing unnecessary data exchanges, JProfiler helps in cutting down data transfer
costs, which can be a significant portion of cloud expenses.

Insight into socket operations and HTTP connections becomes possible with JProfilers
probes. Probes provide insight into high-level systems and are not present in simpler
profilers. Both incoming and outgoing connections can be analyzed with JProfiler, For
example:

• Incoming HTTP connections split the call tree with configurable granularity, so you can
analyze requests separately

• Outgoing HTTP connections are shown in the views of the "HTTP client" probe, where
information like URL hot spots, telemetries and single requests are available.

• The socket probe provides low-level information on data transfer and throughputs

Through the reduction of cacheable calls and the streamlining of communication in
general, reductions in data transfer of 10% to 30% are obtainable when using JProfiler.

The total impact on cloud costs by reducing CPU times, memory consumption and data
transfer is substantial. For organizations that have non-trivial cloud costs, these savings
will massively exceed the investment of purchasing JProfiler licenses for their developers.

Reducing Production Outages
Production outages with JVM-based applications can take many forms: Crashes due to
a lack of memory, unresponsive JVMs stuck in loops or deadlocks, single tasks or requests
that don't perform as expected, and many other problems. The common theme is that
these issues are not observable in development and staging environments and have to
be investigated in the production environment. Having JProfiler at your disposable in these
situations can be the difference between quick recovery and disaster.

In this respect, JProfiler's unique feature set stands out in three key areas: being able to
attach to JVMs in all circumstances, getting high-level information for finding the cause
of the problem, and analyzing post-mortem data from crashes.

Advanced Production Profiling

JProfiler's remote attach functionality allows for profiling in production environments
without introducing significant overhead. This capability is invaluable for diagnosing issues
in real-time, thus minimizing the duration and impact of production outages.

A key capability which is required for this purpose is attaching to JVMs on remote machines.
JProfiler supports "zero-configuration remote attach". We use this term because JProfiler

5

• Has a built-in SSH client that can be configured for multi-hop tunnels
• Automatically detects remote platforms, procures the necessary native agent libraries,

and uploads them to the remote machine
• Uses a command line tool to scan the remote machine for running JVMs
• Presents these JVMs in the UI and allows you to start profiling immediately

In addition, production JVMs often run in Docker containers or on Kubernetes clusters.
JProfiler has built-in functionality to look into Docker containers and attach to JVMs that
run in containers managed by Kubernetes.

Finally, JProfiler also comes with command line tools the let you prepare a JVM for profiling
and control data recording and snapshot saving for profiled JVMs.

Debugging with Advanced Probes

The advanced probes in JProfiler offer deep insights into complex subsystems, enabling
developers to understand and rectify issues swiftly.

Probes are a term that describes the semantic profiling features in JProfiler operating on
a higher level than method-based profiling. They provide analytic access to
performance-critical application layers that pure method call trees cannot provide.
JProfiler's probes fall into three categories:

• Databases
When database operations via JDBC, JPA, MongoDB or other databases are slow, the
developer needs to see the offending SQL statements, JPA queries or MongoDB
operations. Method-based hotspots are useless in this context because they do not
isolate the cause of the problem.

• Communication mechanisms
HTTP requests and other RPC mechanisms are also problematic in the same way. The
URLs and connection parameters give clues on how to fix a problem, so they have to
be available to the developer.

6

• JVM subsystems
Other high-level data in the JVM needs to be visible in a fire-fighting operation, such
as files, sockets and the communication with external processes.

Post-mortem Analysis

JProfiler supports comprehensive post-mortem analysis for data saved with JFR (Java
Flight Recorder), HPROF and PHD, providing a detailed overview of the system's state at
the time of failure, which is crucial for preventing future outages.

Even if a JVM dies because of an OutOfMemoryError or some other crash, these built-in
diagnostic tools can provide data for analysis. To successfully arrive at a swift conclusion,
developers need a profiler that they are familiar with and a tool that provides them with
advanced analysis features. JProfiler is the all-in-one solution that lets developers use
the same skills for development profiling, in-production profiling and analysis of
post-mortem data dumps.

7

As analyzed elsewhere (1) the cost of an hour of downtime can be considerable, even
millions of dollars for large companies. By having developers who are familiar with JProfiler,
downtimes can be reduced to a fraction. In these scenarios, the investment into JProfiler
is tiny compared to the damage that is prevented with it.

Comparison With Free Profiling Tools
While free profiling tools provide basic functionality, they often fall short in offering the
depth of analysis, ease of use, and comprehensive features found in JProfiler.

Comparison to Built-In Tools

Java comes with Java Flight Recorder (JFR), a built-in diagnostic tool that has some
overlap with a profiler. JFR is primarily a structured logging tool, best suited for
low-overhead data recording for post-mortem analysis. Its large recording granularity
means that it cannot generally be used as a CPU profiler. Similarly, using HPROF dumps
with free-of-charge, but generally hard-to-use display tools like MAT only provides limited
analysis, because there is no way to analyze live data.

Sometimes, the only available data is from these built-in data dumps. JProfiler fully supports
the corresponding file formats and lets developers use its advance analysis capabilities
on them, all in the same UI that developers are already familiar with. Whenever possible,
the full feature set of the JProfiler agent can be used for maximum insight with regular
profiling sessions.

Comparison to Free-Of-Charge Profilers

While you could use free-of-charge profilers to realize some parts of the savings discussed
in this whitepaper, they will be much smaller due to the much smaller feature set. Discussing
all features that make JProfiler stand out would be a very long list and involve many areas
in its feature set. For the purpose of this whitepaper, we showcase the call tree, a view that
is the core of CPU profilers and that is often used by developers on a daily basis.

(1) https://www.pingdom.com/outages/average-cost-of-downtime-per-industry/

8

https://www.pingdom.com/outages/average-cost-of-downtime-per-industry/

JProfiler's unparalleled capabilities related to call trees and hot spots give developers the
necessary tool to understand where optimization work should be focussed. For example,
this includes features like

• Removing selected parts of the call tree
• Setting a selected node in the call tree as the new root
• Collapsing recursions in the call tree
• Calculating cumulated outgoing calls and backtraces to selected methods
• Displaying the call tree as an interactive graph or as an interactive flame graph
• Inlining async executions
• Splitting the call tree on selected methods with a script
• Recording exceptional method runs for selected methods
• Defining ad-hoc probes with scripts to create custom analyzes

The above functionality is not present in free-of-charge profilers like VisualVM or Aysnc
Profiler and is just a small list of features that put JProfiler on a different level.

The Value of Investing in the Right Tools for High-Stakes Environments

Imagine two mechanics tasked with repairing and optimizing a fleet of high-performance
race cars. One mechanic has a standard set of hand tools. These tools are reliable for
basic tasks and straightforward repairs but lack the precision and efficiency needed for
diagnosing and fixing the complex issues that high-performance race cars often present.
This mechanic can handle common problems but struggles with more complicated issues,
taking longer to diagnose problems and sometimes missing the optimal solution altogether.

On the other hand, the second mechanic is equipped with a state-of-the-art diagnostic
machine, similar to a developer armed with JProfiler. This advanced toolset allows the
mechanic to quickly and accurately diagnose even the most complex issues, that would
be time-consuming or even impossible to detect with basic tools. The high-tech equipment

9

guides the mechanic to the exact problem area, suggests the best repair methods, and
helps optimize the car's performance beyond its initial state.

The same scenario plays out on the JVM, where the developer with JProfiler not only fixes
all problems faster but is also capable of solving complex issues than developers who
only have access to free-of-charge profiling tools might not be able to handle.

Conclusion
JProfiler represents a strategic investment for development teams aiming for high
efficiency, reduced operational costs, and minimized downtime. Its advanced features,
focusing on critical aspects of modern software development, offer significant advantages
over free profiling tools. The cost of JProfiler is not only justifiable, but is quickly amortized,
delivering value that far exceeds its price tag.

In the fast-evolving world of software development, equipping teams with JProfiler is a
decision that pays dividends in accelerated development cycles, reduced cloud costs,
and enhanced application reliability.

10

	Executive Summary
	Introduction
	Shortening Development Times
	Lowering Cloud Costs
	Reducing Production Outages
	Comparison with Free Profiling Tools
	Conclusion

